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ABSTRACT

The maximum likelihood method is the best method for estimating the

parameters of a linear structural relationship model. However, if the

data contains outliers then sample estimates and subsequent results of

the maximum likelihood method could be unreliable. Robust estimation

techniques have become popular due to its resistance to outliers. Thus,

we proposed a modi�ed maximum likelihood method to estimate the pa-

rameters of a linear structural relationship model where the non-robust

components of the maximum likelihood methods are replaced by their

corresponding robust alternatives. The simulation study and real life ex-

amples show that the proposed method performs very well in estimating

the parameters in terms of estimated bias and mean square error.
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1. Introduction

In linear regression analysis, the explanatory variables are assumed to be
�xed and measured without error. But in reality, this assumption often does not
hold due to many practical reasons and inherent measurement errors arise into
the observations. Ignorance of measurement errors directly a�ects the desirable
criteria of point estimators or interval estimators. A large body of literature has
been developed over the years (see Madansky (1959), Moran (1971), Kendall
and Stuart (1973), Fuller (1987) and Cheng and Van Ness (1994)) on the errors-
in-variables model (EIVM). The linear structural relationship model (LSRM) is
one of the families in the EIVM which also includes functional, ultrafunctional
and ultrastructural relationship models. Over the past thirty years, a large
number of works have been done in LSRM (see, Birch (1964),Barnett (1967),
Chan and Mak (1979), Lakshminarayanan and Gunst (1984), Reilman et al.
(1985), Bolfarine and Cordani (1993), Hood et al. (1999)).

Suppose two random variables X and Y are linearly related as

Y = α+ βX (1)

It is assume that both X and Y variables are measured without error.
However, in real life, sometimes these two variables can not measure without
error. Suppose Xi and Yi are measured with errors δi, εi respectively, then we
can write these variable as follows.

xi = Xi + δi

yi = Yi + εi
(2)

where δi ∼ N(0, σ2
δ ) and εi ∼ N(0, σ2

ε)

This states that the variances of error terms are homoscedastic. Kendall and
Stuart (1973) described the structural model considering as normal distribution
with mean µ and σ2

X variance. Now we use equation 2 to rewrite equation 1 as

yi = α+ βxi + (εi − βδi)
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which shows that both xi and yi are correlated with the error term (εi − βδi)
and depends on β.

Most of the authors use the maximum likelihood method for estimating
parameters in EIVM, which is non-robust. To make estimator robust many
authors, Lieberman (2005), Kolá£ek (2008), Alfaro and Ortega (2009), Liu
(2012) used some modi�cation of traditional method, where classical estima-
tors are replaced by their corresponding robust estimators. In this study, we
also propose a modi�cation of maximum likelihood estimation method to esti-
mate the parameters in a linear structural relationship model. This paper is
organized as follows: In Section 2 we review the estimation of the parameters
for LSRM using the maximum likelihood estimation method and propose a
modi�ed maximum likelihood estimation method. We report a Monte Carlo
simulation experiment in Section 3 which is designed to investigate the per-
formance of the new estimate of parameters in the presence of outlier(s). In
Section 4, we apply the new method on the Iron in Slag data as given in Hand
et al. (1993). Serum Kanamycin data taken from Kelly (1984) to investigate
the performance of the proposed method.

2. Estimation of parameters in LSRM

In this section, we �rst review the maximum likelihood estimation (MLE)
method for the estimation of slope and intercept in LSRM and then introduce
the modi�ed maximum likelihood estimation method for the same.

2.1 Maximum likelihood method

In LSRM, we assumed that the errors are normal and hence the bivariate
normal distribution of xi and yi is given by

(
xi
yi

)
∼ N

([
µ

α+ βµ

]
,

[
σ2
X + σ2

δ βσ2
X

βσ2
X β2σ2

X + σ2
ε

])

Kendall and Stuart (1973) have shown that the above distribution yields
�ve normal equations with six unknowns (µ, α, β, σ2

X , σ
2
δ , σ

2
ε), hence an addi-

tional assumption is required for the unique and consistent solutions for the
parameters of the model (1). In particular, Hood et al. (1999) discussed in
detail the procedure to estimate the parameters of model (1) under various
assumptions. However, for the case when ratio of error variances (λ = σ2

ε/σ
2
δ )
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is assumed to be known Hood et al. (1999), the MLE for the parameters are
given by

β̂MLE =
(S2
y − λS2

x) +
√

(S2
y − λS2

x)2 + 4λS2
xy

2Sxy

α̂MLE = ȳ − β̂MLE x̄

(3)

where, S2
x, S

2
y and Sxy are the corrected sums of squares and products can be

written in a convenient format as

S2
x =

1

n

∑
(xi − x̄)2, S2

y =
1

n

∑
(yi − ȳ)2, Sxy =

1

n

∑
(xi − x̄)(yi − ȳ)

2.2 Modi�ed maximum likelihood method

The estimation of slope and intercept by the MLE method given in equation 3
contains some standard statistics such as mean, variance and covariance which
are sensitive to outliers. In order to avoid the unfortunate consequences of
the e�ect of outliers we propose a modi�ed maximum likelihood estimation
(MMLE) method here by replacing the usual estimators in equation (3) with
robust estimators. To construct the MMLE for slope and intercept, the sample
mean is replaced by sample median, i.e. x̄(Robust) = median(x) and ȳ(Robust) =
median(y), and the sample variances S2

x and S2
y given in 3 are replaced by

estimated Qn, which is proposed by Rousseeuw and Croux (1993), i.e.

Replace S2
x = 1

n

∑
(xi − x̄)2 by {Qn(x)}2 = S2

x(Robust) and

Replace S2
y = 1

n

∑
(yi − ȳ)2 by {Qn(y)}2 = S2

y(Robust)

where, Qn(x) = d{|xi−xj |; i < j}(k) and Qn(y) = d{|yi−yj |; i < j}(k), where d
is a constant factor chosen to provide consistency of estimation of the standard
deviation of a normal distribution and k =

(
h
2

)
≈
(
n
2

)
/4, where h = [n/2] + 1

is roughly half the number of observations (Rousseeuw and Croux (1993)) and
the sample covariance Sxy is replaced by Sxy(Robust) , which can be written
in the following form

Sxy(Robust) = rQn ∗ Sx(Robust) ∗ Sy(Robust)
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where rQn is the robust correlation coe�cient proposed by Shevlyakov and
Smirnov (2011) de�ned as

rQn =
Qn

2(u)−Qn2(v)

Qn
2(u) +Qn

2(v)

and u and v are the robust principle variables de�ned as

u =
x−median(x)√

2Qn(x)
+
y −median(y)√

2Qn(y)

and

v =
x−median(x)√

2Qn(x)
− y −median(y)√

2Qn(y)

Now we replace the robust estimators in place of classical estimators in equation
3 and obtain the modi�ed maximum likelihood estimator (MMLE) for the slope
and intercept of LSRM as

β̂MMLE =
(S2
y(Robust) − λS2

x(Robust)) +
√

((S2
y(Robust) − λS2

x(Robust))2 + 4λS2
xy(Robust)

2Sxy(Robust)

α̂MMLE = ȳ(Robust) − β̂MMLEx̄(Robust)

(4)

2.3 Simulation study

In this section, we carry out a simulation study to compare the performance of
the MMLE method with the existing MLE method in the presence of outliers.
Following Mamun et al. (2019), we simulate observations from the following
model,

Yi = 1 +Xi, xi = Xi + δi, yi = Yi + εi

where Xi ∼ N(20, 3) and δi, εi ∼ N(0, 0.1). In the next step, we contaminate
the data at each stage by replacing original observations by contaminated ob-
servations. We generate the contaminated data points, for example at point c
for variable y in a way that the observation yc is given by yc

∗ = 1 +Xc+ εc+ v
where v is constant Mamun et al. (2012).We generate samples of size 20, 50
and 100 from the sampling distribution as mentioned earlier.In order to inves-
tigate the robustness of MMLE, simulation study is extended to non-normal
error terms. Thus,the error terms δi and εi are generated from three di�erent
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distributions, symmetric beta distribution with parameters (3, 3), right skewed
beta distribution (2, 9) and left skewed beta distribution (9, 2). Furthermore,
on the basis of estimated bias (EB) and mean square error (MSE) in 15,000
trials; we examine the properties of these two methods. Simulation results are
given in Tables 1 to 8.

Table 1: EB and MSE of the slope: Normal-Case

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 4.89E-05 1.32E-04 3.86E-05 4.77E-05 2.28E-05 2.19E-05
MMLE 5.99E-02 1.35E-01 1.75E-02 3.58E-02 5.94E-03 1.22E-02

Single outlier
MLE 4.44E+00 5.15E+03 9.52E-01 9.75E-01 4.12E-01 1.79E-01
MMLE 3.92E-01 2.43E-01 1.26E-01 1.26E-01 1.98E-01 5.46E-02

10%
MLE 8.21E+00 9.09E+04 6.76E+00 7.58E+02 5.99E+00 4.35E+01
MMLE 4.04E-01 2.14E-01 3.87E-01 1.61E-01 3.84E-01 1.53E-01

20%
MLE 1.39E+01 4.17E+05 1.27E+01 1.88E+05 1.11E+01 9.04E+02
MMLE 2.94E-01 1.13E-01 2.70E-01 7.85E-02 2.67E-01 7.39E-02

30%
MLE 8.48E+01 1.15E+08 2.10E+01 2.62E+06 1.82E+01 5.89E+04
MMLE 2.16E-01 5.97E-02 2.00E-01 4.28E-02 1.99E-01 4.09E-02

Table 2: EB and MSE of the slope: Right Skewed-Case, Beta (2, 9)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 1.65E-04 1.65E-04 1.44E-05 6.00E-05 1.13E-05 2.77E-05
MMLE 6.27E-02 1.34E-01 1.82E-02 3.43E-02 6.21E-03 1.17E-02

Single outlier
MLE 4.43E+00 6.37E+04 9.51E-01 9.77E-01 4.10E-01 1.78E-01
MMLE 3.85E-01 2.32E-01 2.90E-01 1.17E-01 1.84E-01 4.87E-02

10%
MLE 6.95E+00 1.66E+06 5.56E+00 3.90E+04 3.01E+00 4.40E+01
MMLE 3.99E-01 2.08E-01 3.86E-01 1.60E-01 3.81E-01 1.51E-01

20%
MLE 3.70E+01 1.15E+07 1.62E+01 5.13E+06 1.30E+01 2.56E+03
MMLE 2.93E-01 1.11E-01 2.70E-01 7.88E-02 2.67E-01 7.39E-02

30%
MLE 9.78E+01 5.29E+08 6.55E+01 8.31E+07 2.10E+01 6.23E+05
MMLE 2.16E-01 5.94E-02 2.01E-01 4.31E-02 1.99E-01 4.09E-02

Table 3: EB and MSE of the slope: Left Skewed-Case, Beta (9, 2)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 1.51E-04 1.65E-04 1.33E-05 6.00E-05 1.11E-05 2.77E-05
MMLE 5.05E-02 1.27E-01 1.46E-02 3.41E-02 6.99E-03 1.18E-02

Single outlier
MLE 2.34E+00 1.15E+05 9.51E-01 9.76E-01 4.10E-01 1.78E-01
MMLE 3.79E-01 2.28E-01 2.87E-01 1.15E-01 1.84E-01 4.86E-02

10%
MLE 4.33E+01 6.67E+05 7.29E+00 1.61E+03 6.09E+00 1.57E+02
MMLE 3.97E-01 2.06E-01 3.86E-01 1.60E-01 3.81E-01 1.50E-01

20%
MLE 1.08E+02 7.89E+07 1.12E+01 3.86E+06 1.06E+01 1.84E+05
MMLE 2.93E-01 1.11E-01 2.71E-01 7.90E-02 2.67E-01 7.39E-02

30%
MLE 1.53E+02 2.89E+08 1.44E+01 1.49E+07 1.24E+01 3.72E+06
MMLE 2.80E+00 5.88E-02 2.01E-01 4.31E-02 1.99E-01 4.09E-02
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Table 4: EB and MSE of the slope: Non-Normal Symmetric-Case, Beta (3, 3)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 4.77E-04 4.73E-04 1.59E-04 1.71E-04 2.40E-05 8.19E-05
MMLE 4.75E-02 1.02E-01 1.29E-02 2.35E-02 5.20E-03 8.10E-03

Single outlier
MLE 4.14E+00 3.03E+03 9.52E-01 9.83E-01 4.10E-01 1.79E-01
MMLE 3.07E-01 1.66E-01 1.92E-01 6.12E-02 1.11E-01 2.19E-02

10%
MLE 1.85E+01 1.72E+06 6.91E+00 4.07E+02 6.03E+00 6.38E+01
MMLE 3.57E-01 1.69E-01 3.58E-01 1.37E-01 3.57E-01 1.31E-01

20%
MLE 3.19E+01 3.43E+06 9.17E+00 7.11E+05 7.02E+00 2.13E+04
MMLE 2.85E-01 1.03E-01 2.66E-01 7.62E-02 2.63E-01 7.12E-02

30%
MLE 3.55E+01 1.08E+07 1.34E+01 5.22E+06 1.18E+01 7.54E+05
MMLE 2.14E-01 5.78E-02 1.99E-01 4.25E-02 1.97E-01 4.01E-02

Table 5: EB and MSE of the intercept: Normal-Case

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 1.09E-03 5.42E-02 2.78E-04 1.95E-02 5.13E-05 8.96E-03
MMLE 1.20E+00 5.39E+01 3.50E-01 1.44E+01 1.19E-01 4.92E+00

Single outlier
MLE 8.66E+01 1.99E+06 1.85E+01 3.72E+02 7.98E+00 6.77E+01
MMLE 7.65E+00 9.45E+01 6.01E+00 4.96E+01 3.92E+00 2.15E+01

10%
MLE 1.61E+02 3.67E+07 1.33E+02 3.03E+05 1.17E+02 1.68E+04
MMLE 7.67E+00 8.01E+01 7.33E+00 5.86E+01 7.26E+00 5.49E+01

20%
MLE 2.70E+02 1.62E+08 2.50E+02 7.06E+06 2.44E+02 3.58E+05
MMLE 4.94E+00 3.68E+01 4.45E+00 2.27E+01 4.39E+00 2.06E+01

30%
MLE 1.73E+03 4.83E+10 4.12E+02 4.73E+07 3.57E+02 2.33E+07
MMLE 2.63E+00 1.45E+01 2.31E+00 7.36E+00 2.29E+00 6.16E+00

Table 6: EB and MSE of the intercept: Right Skewed-Case, Beta (2, 9)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 4.09E-03 6.83E-02 3.95E-04 2.49E-02 7.09E-05 1.14E-03
MMLE 1.26E+00 5.48E+01 3.67E-01 1.40E+01 1.25E-01 4.79E+00

Single outlier
MLE 8.77E+01 2.72E+07 1.17E+01 3.79E+02 8.03E+00 6.85E+01
MMLE 7.57E+00 9.20E+01 5.77E+00 4.67E+01 3.67E+00 1.96E+01

10%
MLE 8.27E+01 6.86E+08 1.90E+01 1.55E+07 9.19E+00 1.74E+04
MMLE 7.63E+00 7.92E+01 7.36E+00 5.91E+01 7.28E+00 5.52E+01

20%
MLE 1.56E+02 4.79E+09 3.48E+01 2.05E+08 2.57E+01 1.05E+05
MMLE 4.96E+00 3.66E+01 4.50E+00 2.32E+01 4.44E+00 2.11E+01

30%
MLE 7.09E+03 8.86E+10 3.81E+02 2.65E+09 3.35E+02 2.89E+07
MMLE 2.68E+00 1.47E+01 2.35E+00 7.61E+00 2.33E+00 6.38E+00
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Table 7: EB and MSE of the intercept: Left Skewed-Case, Beta (9, 2)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 7.29E-02 7.90E-03 2.66E-02 8.25E-04 1.51E-03 1.23E-04
MMLE 1.05E+00 5.53E+01 3.03E-01 1.48E+01 1.45E-01 5.13E+00

Single outlier
MLE 4.98E+01 4.75E+07 1.93E+01 4.04E+02 4.10E-01 7.31E+01
MMLE 7.70E+00 9.60E+01 5.90E+00 4.91E+01 3.80E+00 2.08E+01

10%
MLE 8.64E+02 2.84E+08 7.49E+01 7.00E+05 1.24E+01 7.12E+04
MMLE 7.86E+00 8.34E+01 7.61E+00 6.32E+01 7.52E+00 5.89E+01

20%
MLE 2.23E+03 3.37E+10 6.02E+02 1.65E+09 3.40E+02 7.72E+07
MMLE 5.15E+00 3.92E+01 4.67E+00 2.50E+01 4.61E+00 2.27E+01

30%
MLE 3.31E+03 1.37E+11 7.74E+02 1.10E+10 5.12E+02 9.39E+08
MMLE 2.80E+00 1.56E+01 2.48E+00 8.35E+00 2.45E+00 7.03E+00

Table 8: EB and MSE of the intercept: Non-Normal Symmetric-Case, Beta (3, 3)

Contamination Methods
n = 20 n = 50 n = 100

EB MSE EB MSE EB MSE

Without outlier
MLE 1.01E-02 2.03E-01 3.81E-03 7.33E-02 5.14E-04 3.51E-03
MMLE 9.79E-01 4.30E+01 2.66E-01 9.94E+00 1.07E-01 3.45E+00

Single outlier
MLE 8.33E+01 1.20E+06 1.90E+01 3.94E+02 8.16E+00 7.10E+01
MMLE 6.10E+00 6.78E+01 3.86E+00 2.52E+01 2.24E+00 9.07E+00

10%
MLE 3.83E+02 7.47E+08 1.39E+02 1.70E+05 1.21E+02 2.61E+04
MMLE 6.90E+00 6.60E+01 6.92E+00 5.19E+01 6.89E+00 4.92E+01

20%
MLE 6.36E+02 1.36E+09 1.79E+02 3.19E+08 1.15E+02 1.08E+06
MMLE 4.90E+00 3.47E+01 4.50E+00 2.32E+01 4.43E+00 2.09E+01

30%
MLE 7.23E+02 4.43E+09 5.69E+02 6.07E+08 3.36E+02 3.65E+06
MMLE 2.71E+00 1.46E+01 2.40E+00 7.84E+00 2.35E+00 6.48E+00

Results presented in Tables 1 to 8 clearly show the advantage of using
MMLE method. When the data are free from outliers, the EB and MSE of
the proposed modi�ed maximum likelihood estimator are similar to those of
the maximum likelihood estimator. But we observe a marked di�erence when
the data set gets contaminated. The EB and MSE of slope and intercept using
MLE break down cheaply and become huge. It tends to deteriorate with the
increase in the level of contamination. But the performance of the MMLE is
solid here. The EB and MSE values are not a�ected by outliers irrespective of
the sample sizes and percentages of contamination.

3. Numerical Examples

In this section we consider two real world data to investigate the perfor-
mance of the MMLE method. In order to make the relationship as model 1,
we assume that measurement error can occur in both the variables of these two
examples.
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3.1 Iron in slag data

At �rst we consider the Iron in Slag data taken from Hand et al. (1993). This
data contains 50 results of crushed blast-furnace slag measured by two di�erent
techniques, which are chemical test (dependent variable) and magnetic test
(independent variable). The original data do not contain any outlier. However,
we purposely insert few outliers in this data set to create few di�erent situations
like single outlier, 10%, 20% and 30% outlier cases Mamun et al. (2012). We
employ both the MLE and the MMLE to estimate the parameters of LSRM
and the results are shown in Table 9.

Table 9: Estimated parameters using two di�erent methods from Iron in Slag data

Contamination Methods Intercepts Slopes

Without outlier
MLE 2.16 0.9303
MMLE 1.5 1

Single outlier
MLE -3.5142 1.2225
MMLE -1.107 1.1336

10%
MLE -86.2355 5.4494
MMLE 1.0911 1.0722

20%
MLE -245.4938 13.5884
MMLE 2.7288 1.0651

30%
MLE 2724.891 -132.4453
MMLE 4.5106 1.0507

We observe from Table 9 that in absence of outlier, the performance of the
MMLE is very similar to the MLE. But the MLE of slopes and intercepts start
breaking down in the presence of outliers and gets bigger and bigger with the
increase in the percentages of outliers, whereas the MMLE was not a�ected at
all by the outliers.

3.2 Serum Kanamycin data

Our �nal example is the Serum Kanamycin data taken from Kelly (1984). In
order to measure the serum kanamycin levels in blood samples a simultaneous
pairs of measurements were taken from twenty premature babies. These two
measurements were obtained by heelstick method (x ) and umbilical catheter
method (y). Likewise the previous example, the original data do not contain
any outlier. We insert few outliers in this data set to create few di�erent
situations like single outlier, 10%, 20% and 30% outlier cases. The estimates
of slope and intercept for this data are computed by the MLE and the MMLE
under a variety of situations and the results are shown in Table 10.
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Table 10: Estimated parameters using two di�erent methods from Serum Kanamycin data

Contamination Methods Intercept Slope

Without outlier
MLE -1.16 1.0697
MMLE -0.388 0.9419

Single outlier
MLE -23.5304 2.2023
MMLE -1.0586 0.9754

10%
MLE -30.2891 2.5967
MMLE -1.9299 1.0189

20%
MLE -84.5344 5.3948
MMLE -0.6488 1.0574

30%
MLE -180.6768 10.2556
MMLE 1.8972 1.0801

Table 10 shows the improvement of using our proposed MMLE method. For the
original data set where there was no outlier, the modi�ed maximum likelihood
estimators are similar to the maximum likelihood estimators. But we observe a
marked di�erence when outliers are present in the data. The estimated param-
eters using MLE break down completely with the increase in the percentages
of outliers, whereas the MMLE's are not at all a�ected by the outliers.

4. Conclusion

In this paper, we proposed a modi�ed maximum likelihood estimation
method based on robust estimator to estimate parameters for the LSRM.
Both the real-world examples and simulation results show that traditional MLE
method gives marginally better result than our proposed method when no out-
lier is present in the data. However, the MLE method breaks down completely
when the degree of contamination increases, while the modi�ed maximum like-
lihood estimation method performs very well in every situation. Since our
proposed method is able to produce satisfactory results even in the presence
of a large amount of outliers, so the modi�ed maximum likelihood estimator
should be considered as a good alternative to the traditional maximum likeli-
hood estimator.
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